Reversal of orbital angular momentum arising from an extreme Doppler shift.
نویسندگان
چکیده
The linear Doppler shift is familiar as the rise and fall in pitch of a siren as it passes by. Less well known is the rotational Doppler shift, proportional to the rotation rate between source and receiver, multiplied by the angular momentum carried by the beam. In extreme cases the Doppler shift can be larger than the rest-frame frequency and for a red shift, the observed frequency then becomes "negative." In the linear case, this effect is associated with the time reversal of the received signal, but it can be observed only with supersonic relative motion between the source and receiver. However, the rotational case is different; if the radius of rotation is smaller than the wavelength, then the velocities required to observe negative frequencies are subsonic. Using an acoustic source at [Formula: see text]100 Hz we create a rotational Doppler shift larger than the laboratory-frame frequency. We observe that once the red-shifted wave passes into the "negative frequency" regime, the angular momentum associated with the sound is reversed in sign compared with that of the laboratory frame. These low-velocity laboratory realizations of extreme Doppler shifts have relevance to superoscillatory fields and offer unique opportunities to probe interactions with rotating bodies and aspects of pseudorelativistic frame translation.
منابع مشابه
An acoustic spanner and its associated rotational Doppler shift
Light carries a spin angular momentum associated with its polarization and an orbital angular momentum arising from its phase cross-section. Sound, being a longitudinal wave, carries no spin component but can carry an orbital component of angular momentum when endowed with an appropriate phase structure. Here, we use a circular array of loudspeakers driven at a common angular frequency ωs but w...
متن کاملSorting photons of different rotational Doppler shifts (RDS) by orbital angular momentum of single-photon with spin-orbit-RDS entanglement.
We demonstrate that single photons from a rotating q-plate exhibit an entanglement in three degrees of freedom of spin, orbital angular momentum, and the rotational Doppler shift (RDS) due to the nonconservation of total spin and orbital angular momenta. We find that the rotational Doppler shift deltaomega = Omega((delta)s + deltal) , where s, l and Omega are quantum numbers of spin, orbital an...
متن کاملDetection of a spinning object using light's orbital angular momentum.
The linear Doppler shift is widely used to infer the velocity of approaching objects, but this shift does not detect rotation. By analyzing the orbital angular momentum of the light scattered from a spinning object, we observed a frequency shift proportional to product of the rotation frequency of the object and the orbital angular momentum of the light. This rotational frequency shift was stil...
متن کاملObservation of the rotational Doppler shift of a white-light, orbital-angular-momentum- carrying beam backscattered from a rotating body
We observe the rotational Doppler shift of an orbital angular momentum (OAM)-carrying white-light beam after it is backscattered from a rotating object. Unlike the well known linear shift, this rotational shift is independent of the optical frequency, and hence each spectral component of the scattered light is shifted by the same value. Consequently, even a white-light source can give rise to a...
متن کاملOptical angular momentum in a rotating frame.
It is well established that light carrying orbital angular momentum (OAM) can be used to induce a mechanical torque causing an object to spin. We consider the complementary scenario: will an observer spinning relative to the beam axis measure a change in OAM as a result of their rotational velocity? Remarkably, although a linear Doppler shift changes the linear momentum of a photon, the angular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره شماره
صفحات -
تاریخ انتشار 2018